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Abstract 
 
Supply chain oscillations satisfy a sound wave-like dispersion relation when a company responds 
only to the status of the companies immediately above and below it in the chain.  However, when 
information exchange makes it possible for the company to respond to the status of all the 
companies in the chain, the dispersion relation changes from that of a sound wave to that of a 
plasma oscillation.  The plasma oscillation exhibits Landau damping, and thus the information 
exchange leads to beneficial suppression of the oscillations. 
 
 
1.  Introduction 
 
Supply chains are notorious for exhibiting oscillations in inventories that are both disruptive and 
costly in resources.  Business schools have for several years exposed their students to the 
phenomena through the widely used simulation game created by J. D. Sterman and his colleagues 
at MIT [Sterman and Fiddaman (1993)].   
 
Sterman and Fiddaman conjectured that the oscillations were due in part to the lack of 
information exchange between the companies in the change.  This lack of information exchange 
prevents controlled responses and leads to over reaction to perturbations from the steady state. 
 
Recently, a simple model was developed in which each company in the supply chain responded 
only to the status of the companies immediately above and below it in the chain [Dozier and 
Chang (2005a)].  The model displayed the types of supply chain oscillations observed in both the 
simulations and in actual practice.  The oscillations satisfied the same type of dispersion relation 
as acoustic waves in a solid.  In a follow-on paper, a crude continuum flowing fluid model of the 
supply chain was introduced:  in the flowing fluid model, the resulting supply chain oscillations 
were found to satisfy the same dispersion relation as sound waves [Dozier and Chang (2005b)].   
 
The purpose of this paper is to explore what happens if information exchange occurs between all 
the companies in the supply chain.  This enables each company to respond not just to the 
inventory status of the layers immediately below and above it in the chain, but to the inventory 
status of all the companies in the chain.  It will be shown that the oscillations change their 
character and become more like plasma oscillations than sound waves.  The associated Landau 
damping of the oscillations suggests that information exchange leads to beneficial suppression of 
the oscillations.  
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Section 2 presents a more realistic model of local information exchange a supply chain than our 
earlier treatments, in order to provide an easy comparison with the treatment of universal 
information exchange. 
 
Section 3 derives the oscillation dispersion relation for a supply chain in which there is 
information exchange with all the companies in the chain. 
 
Section 4 discusses the results and their implications. 
 
2.  Supply chain with local exchange of information 
 
In Dozier and Chang (2005b), the supply chain was treated in the continuum limit where instead 
of designating each level in the chain by a discrete label n, the position in a chain was designated 
by a continuum variable x.  Flow of production  through each position x in the chain was 
characterized by a velocity variable v.  A long supply chain was treated in which end effects were 
ignored. 

We begin by introducing a function of position, production flow rate velocity, and time, 
f(x,v,t)dxdv that denotes a flow in the number of production units in the intervals dx and 
dv at a given x and v at the time t.  This distribution function can be expressed as a 
conservation equation in the phase space of x and v: 

 ∂f/∂t +  ∂[fdx/dt]/∂x +∂[fdv/dt]/∂v = 0     [1] 

This equation simply states that the change of fdxdv is due only to the divergence of the 
flow into dxdv. This implies that the flow into a volume element dxdv may not the same 
as the flow out. 

By introducing a force F that influences the velocity of the production rate v , this 
equation can be rewritten  

 ∂f/∂t +  ∂[fv]/∂x +∂[fF]/∂v = 0                 [2] 

Since position x and velocity of the production rate v are independent variables, 

 ∂v/∂x = 0         [3] 

If. moreover, the force F does not depend on v, 

 ∂F/∂v = 0         [4] 

then eqs [2]-[4] yield 

 ∂f/∂t + v∂f/∂x + F∂f/∂v = 0       [5] 

This has the familiar form of the Vlasov equation for collisionless plasmas [Spitzer 
(1956)]. 
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Now assume that F at the position x is determined only by the level of the inventories of the 
production units immediately above and below x in the chain. Assume that the fractional change 
in the time rate of change of velocity (1/v)dv/dt is proportional to the fractional change in the 
gradient of the density N(x,t): 
 
 (1/v)dv/dt  ∝ - (1/N)dN/dx       [6] 
 
where 
 
 N(x,t) = ∫dvf(x,v,t)        [7] 
 
and where the negative sign is explained below. 
 
For local information exchange with the levels immediately above and below the level of interest, 
the change in the density is observed over only dx =2l, where l is between levels in the supply 
chain   Thus, we can further write 
 
 (1/v)dv/dt  ∝ - (21/N)dN/dx       [8] 
 
The rationale for this expression is that when the inventory of the level below the level of interest 
is less than normal, the production rate (v) will be diminished because of the smaller number of 
production units being introduced to that level.  At the same time, when the inventory of the level 
above the level of interest is larger than normal, the production rate will also be diminished 
because the upper level will demand less input so that it can “catch up” in its production through-
put.  Both effects give production rate changes proportional to the gradient of N.  It is reasonable 
also that the fractional changes are related rather than the changes themselves, since deviations 
are always made from the inventories at hand. 
 
A time scale for the response is missing from eq. [8].   We know that a firm must make decisions 
on how to react to order flows into the firm.    Assume that the time scale of response τresponse  is 
given by 
 
 τresponse  = (1/ξ)τprocessing        [9] 
 
where τprocessing  is the processing time for a unit as it passes through the firm, and for 
simplification we are assuming    ξ is a constant.  Most likely, ξ will be less than unity, 
corresponding to response times being longer than processing times.  
 
Thus, eqs. [6] - [9] lead to 
 
  
 (1/v)dv/dt   - (2ξ1/τprocessing  n)dn/dx      [10] 
 
Since by definition production rate velocity  
 
 v = l/τprocessing           [11],  
 
this gives finally 
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 F = dv/dt = -  2ξv2(1/N)dN/dx           [12] 
 
 
 
 
Insertion of this expression into eq. [5] then yields 
 
 ∂f/∂t + v∂f/∂x - 2ξv2(1/N)(dN/dx) ∂f/∂v = 0     [13] 

In the steady state, the equation is satisfied by  

 f(x,v,t) = f0(v)         [14] 

i.e. by a distribution function that is independent of position and time.   For a smoothly 
operating supply chain, f0(v) will be centered about some flow velocity V0.  

Now suppose there is a (normal mode) perturbation of the form exp[i(ωt – kx)], i.e. 

 f(x,v,t) = f0(v) + f1(v) exp[-i(ωt – kx)]     [15] 

On linearizing eq. [13] with this f(x,v,t), we find that f1(v) satisfies 

 -i(ω-kv)f1 - 2ξv2(1/N0)(dN1/dx) ∂f0/∂v = 0     [16a] 

i.e. 

 -i(ω-kv)f1 - ik 2ξv2(1/N0)N1∂f0/∂v = 0      [16b] 

Solving for f1: 

 f1 =  -2ξk(1/N0) ∫dv’f1(v’) v2∂f0/∂v(ω-kv)-1     [17] 

On integrating this equation with respect to v, we get the dispersion relation relating ω 
and k: 

 1+ 2ξk (1/N0) ∫dvv2∂f0/∂v(ω-kv)-1 =0      [18] 

This equation contains a singularity at ω=kv.  Following the Landau prescription [Landau 
(1946); Stix (1962)] 

 ∫dvv2∂f0/∂v(ω-kv)-1 = PP∫dvv2∂f0/∂v(ω-kv)-1 - iπ(ω/k)2(1/k)∂f0(ω/k) /∂v [19] 

where PP denotes the principal part of the integral. 

To evaluate the principal part, assume that for most v, ω>>kv.  Then approximately 
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 PP∫dvv2∂f0/∂v(ω-kv)-1≈  ∫dvv2∂f0/∂v(1/ω)     [20a] 

or, on integrating this by parts, we find  

 PP∫dvv2∂f0/∂v(ω-kv)-1≈ - 2n0V0
      [20b] 

since f0 is peaked about the equilibrium flow velocity V0 

This gives the sound-wave-like dispersion relation 

 ω ≈ 4ξkV0
         [21] 

Addition to this of the small contribution from the imaginary part yields 
 
 ω = 4ξkV0

 + ω(1/N0)iπ(ω/k)2∂f0(ω/k) /∂v     [22] 
 
or, on using the approximate relationship of eq. [21] for the ω’s in the second term on the 
RHS 
 
 ω = 4ξkV0

 [1+ (1/N0)iπ(4ξV0
 )2∂f0(4ξV0

 ) /∂v]    [23] 
 
For the fast response times made possible by first order rapid information exchange, ξ = 
O(1).  Thus, with f0(v) peaked around V0, ∂f0(4ξV0

 ) /∂v <0. 
 
Accordingly, the imaginary part of ω is less than zero, and this corresponds to a damping 
of the normal mode oscillation.  Since 4ξV0>>V0 (where the distribution is peaked), the 
derivative will be small, however, and the damping will be correspondingly small. 
 
2.  Supply chain with universal exchange of information 
 
Consider next what happens if the exchange of information is not just local. In this case, 
the  force F in eq. [5] is not just dependent on the levels above and below the level of 
interest, but on the f(x,v,t) at all x. 
Let us assume that the effect of f(x,v,t) on a level is independent of what the position of 
x.  This can be described by introducing a potential function Φ that depends on f(x,v,t,) 
by the relation 
 
  ∂2Φ/∂x2 = - [C/N0]∫dv f(x,v,t)      [24] 
 
from which the force F is obtained as 
 
 F = -  ∂Φ/∂x         [25] 
 
The constant C can be determined by having F reduce approximately to the expression of 
eq. [12] when f(x,v,t) is non zero only for the levels immediately above and below the 
level x0 of interest in the chain.  For that case, take 
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 N(x+l) = N(x0) +dN/dx l       [26] 
 
and 
   
 N(x- l) = N(x0) - dN/dx l       [27] 
 
and zero elsewhere.  Then 
 
 F = - ∂Φ/∂x =  - [C/N0](dN/dx) 2l2      [28] 
      
 
On comparing this with the F of eq. [12], F = -  2ξv2(1/N)dN/dx,  we find (since the 
distribution function is peaked at V0) that we can write 
 
 C =  ξV0

2 / l2            [29] 
 
Accordingly, 
 
  ∂2Φ/∂x2 = - [ξV0

2 /N0l2 ]∫dv f(x,v,t)      [30] 
 
 
With these relations, F from the same value of f(x,v,t) at all x above the level of interest 
is the same, and F from the same value of f(x,v,t) at all x below the level of interest is the 
same but of opposite sign.   
 
This is the desired generalization from local information exchange to universal 
information exchange. 
 
It is interesting to see what change this makes in the dispersion relation.   Equation [5] 
now becomes 
 
 ∂f/∂t + v∂f/∂x - ∂Φ/∂x ∂f/∂v = 0      [31] 

and again the dispersion relation can be obtained from this equation by introducing a 
perturbation of the form of eq. [15] and assuming that Φ is of first order in the 
perturbation.  This gives 

 -i(ω-kv)f1 =  ikΦ1∂f0 /∂v       [32] 
 
i.e., 
 
 f1 = -kΦ1∂f0 /∂v (ω-kv)-1       [33] 
 
Since eq. [30] implies 
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   Φ1 = (1/k2) [ξV0
2 /N0l2] ∫dv f1(v)     [34] 

 
we get on integrating eq. [33] over v: 
 
 1+  (1/k) [ξV0

2 /N0l2]∫dv∂f0 /∂v (ω-kv)-1 = 0     [35] 
 
Once again a singularity appears in the integral, so we write 
 
 ∫dv∂f0 /∂v (ω-kv)-1= PP∫dv∂f0 /∂v (ω-kv)-1- iπ(1/k)∂f0(ω/k) /∂v  [36] 
 
Evaluate the principal part by moving into the frame of reference moving at V0, and in 
that frame assume  that kv/ω<<1: 
 
 PP∫dv∂f0 /∂v (ω-kv)-1 ≈ ∫dv∂f0 /∂v (1/ω)[1+(kv/ω)]    
 
    = -kN0/ω2      [37] 
 
Moving back into the frame where the supply chain is stationary, 
 
 PP∫dv∂f0 /∂v (ω-kv)-1≈ -kN0/(ω-kV0)2     [38] 
 
This gives the approximate dispersion relation 
 
 1 - (1/k) [ξV0

2 /N0l2] kN0/(ω-kV0)2 ≈ 0     [39]  
 
i.e. 
 
 ω = kV0 + ξ1/2 V0/l      or ω = kV0 - ξ1/2 V0/l          [40]    
 
To assure that ω>0 as k->0, we shall discard the minus solution as spurious. 
 
Now add the small imaginary part to the integral: 
 
 1+  (1/k) [ξV0

2 /N0l2][ -kN0/(ω-kV0)2 - iπ(1/k)∂f0(ω/k) /∂v]= 0  [41] 
 
On iteration, this yields 
 
 ω≈ kV0 + ξ1/2(V0/l) [1  + i {πξV0

2/(2k2l2N0)}∂f0/∂v ]    [42] 
 
where ∂f0/∂v is evaluated at     
 
 v = ω/k ≈ V0 +  (ξ1/2V0/kl)       [43]  
 
Since for velocities greater than V0 ,  ∂f0/∂v< 0, we see that the oscillation is damped.  
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Universal information exchange has resulted both in changing the form of the supply 
chain oscillation and in suppression of the resulting oscillation.  
 
 
4.  Discussion 
 
The purpose of this paper has been to introduce a simple flow model for comparing the 
impacts of local information exchange to universal information exchange in a supply 
chain.  The local information exchange has been described by a term that describes the 
interaction of a company with those immediately above and below it in the supply chain.  
The universal information exchange has been described by introducing a potential that 
satisfies a Laplace equation.  This potential corresponds to each company above the 
company at the location of interest contributing equally to that company’s actions, and to 
each company below the company at the location of interest contributing equally but 
oppositely to that company’s actions. 
 
It has been demonstrated that for local information exchange, the dispersion relation that 
describes the relation between frequency of oscillation and the wave number of the 
oscillation, resembles that for a sound wave in a flowing fluid, i.e. the wave velocity of 
the perturbations is proportional to the wave number, and is greater than the production 
flow velocity.  These waves are damped, but the damping can be small because the phase 
velocity is so much larger than the flow velocity. 
 
It has also been shown that for universal information exchange, the dispersion relation 
resembles that for a plasma oscillation.  Instead of the frequency being proportional to the 
wave number, as in the local information exchange case, the frequency now contains a 
component which is independent of wave number.  The plasma-like oscillations for the 
universal information exchange case are always damped.  As the wave number k 
becomes large, the damping (which is proportional to ∂f0 (ω/k) /∂v ) can become large as 
the phase velocity approaches closer to the flow velocity V0. 
 
Accordingly, the simple flow model of supply chains has demonstrated that universal 
information exchange both changes the character of the supply chain oscillations and 
suppresses the oscillations.  This supports Sterman and Fiddaman’s conjecture that IT 
will have beneficial effects on supply chains.   
 
The conclusions of this paper have been based on a rather crude flow model of supply 
chains and on some rather approximate treatments of the associated equations.  
Nevertheless, it is hoped that the model has helped develop an intuitive understanding of 
the different effects. 
 
Future work will create numerical simulations hat compares the undampened oscillations 
incurred by serial communication to the predicted dampened oscillations of grid 
communication.   
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