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ABSTRACT 
 
The cybernetic control and management of production can be improved by an understanding of the dynamics of the supply chains for the 
production organizations.  This paper describes an attempt to better understand the dynamics of  a linear supply chain through the 
application of the normal mode analysis technique of physics.  A model is considered in which an organization’s response to a 
perturbation from the steady state is affected by the inertia which the company naturally exhibits.  This inertia determines how rapidly an 
organization can respond to deviations from the steady state of its own inventories and those of the two organizations immediately 
preceding and following it in the chain.   The model equations describe the oscillatory phenomena of the naturally occurring  normal 
modes in the chain, in which waves of deviations from the steady state situation travel forward and backwards through the chain.  It 
would be expected that the most effective cybernetic control occurs when resonant interventions cause either amplification or damping of 
the deviations from the steady state. 
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1.  INTRODUCTION 
 
The cybernetic control and management of production can be 
improved by an understanding of the dynamics of the supply 
chains for the production organizations.  This understanding can 
impact the responses of the organizations to external market 
forces and government regulations,  the organization of control 
processes, and the design of automation.  This paper describes an 
attempt to better understand supply chain dynamics through the 
application of the normal mode analysis technique of physics.  It 
is an extension of an earlier statistical physics treatment of static 
phenomena in company behavior [1] to temporal phenomena. 
 
We consider a cluster of a large number N of companies.  We 
imagine that there is a long chain of suppliers, each supplier 
adding value to the output of the preceding supplier in the chain 
before passing its output on to the next supplier.  At the top of the 
chain is the “exporting company”. 
 
This model is a special case of Gus Koehler’s description of a 
“company cluster” in which several layers of supplier companies 
in the cluster provide goods and services to a limited number of 
exporting companies [2].  To simplify the model, in the current 
paper the assumption is made that each layer consists of only a 
single company.  It is straightforward to remove this restriction, 
but this removal will be postponed to a future paper in order to 
not obscure the basic features of the temporal phenomena in the 
cluster. 
 
The objective of this paper is to twofold:  (1)to see how 
disturbances in the supply chain propagate from one supplier to 
the next, and  (2) to begin to identify the most effective timing 
and amplitude dependences of management or government 
intervention measures to improve performance in a cluster  
 
In Section 2, the parameters of the simple model for the N 
companies in a cluster are described.   

 
In Section 3, the basic equations describing the cluster of N 
companies are derived.   
 
In Section 4, oscillatory solutions to these equations are 
described, and propagating waves are found.   
 
In Section 5, the nature of the propagating disturbances is 
considered, and resonances are identified associated with both the 
phase velocities and the group velocities of the disturbances.   
 
Section 6 summarizes the results, and suggests next steps in 
further exploring the resonance phenomena and exploiting them 
for management control. 
 

2.  PARAMETERS FOR A LINEAR SUPPLY CHAIN 
 
Consider N companies in a cluster.  We imagine that the 
companies are all arranged in a chain such that the first N-1 
companies in the chain are supplier companies, and the Nth 
company in the chain is the exporting company.   
 
It is also possible to regard each “company” as a production 
organization within a large corporation, in which case the 
conclusions apply not to a cluster or companies, but rather to the 
behavior of the large corporation.  Nevertheless, in the following, 
we shall continue to refer to each entity in the chain as a 
“company”.  
 
Each company is assumed to interact only with its closest 
neighbors in the chain.  Specifically, the nth company receives 
the output of the(n-1)st company and after adding value to this 
input, it passes on its output to the (n+1)st company in the chain. 
 
We denote the quantity of Company n’s inventory at any time t 
by Q(n,t), with n = 1,2,…,N. 
 



 
In general, the nature of the output of Company n will be 
different from that of the output of Company n-1 and Company 
n+1, since each company contributes its own “value-added” to 
the input that it receives. 
 
In addition, the number of product units mn  that Company n 
produces for a given number of product units mn-1 that it receives 
from Company n-1 will in general not be the same as mn-1. 
 
As will be seen in the next Section, it will be convenient to define 
a “normalized inventory” for each company that specifically 
accounts for the difference between mn-1, mn. and mn+1.  
Specifically, define 
 
 Y(n,t) = mnQ(n,t)    [1] 
 
and arbitrarily determine the normalization by designating that 
 
 m1 = 1     [2] 
 
With this normalization, mn now designates the number of units 
that the Company n in the chain  could produce providing a 
single unit of output from Company 1 (the first company in the 
chain) goes through the value added processes of the first n 
companies in the chain. 
 
In the following we shall see that oscillatory phenomena occur 
associated with the processing times tn of the companies.   
 
To summarize, the parameters in the model are as stated in the 
following table. 
 
 
Table 1.  Parameters for simple linear-chain model of an N-

company cluster 
 
Inventory of nth company at time t              Q(n,t) 
  
Number of units producible by nth company after a single  
unit of Company 1 passes through the first n companies mn  
  
Normalized inventory of nth company at time t 
             Y(n,t) = mnQ(n,t) 
 
Processing time of nth company    tn
  
 
It is apparent that many other parameters and assumptions could 
be incorporated into a model of a cluster of N companies, but this 
simple model is sufficient to illustrate the type of wave and 
resonance phenomena that can occur. 
 
 
3. EQUATIONS FOR TIME-DEPENDENT INVENTORIES 
 
Consider a steady state situation in which everything is working 
smoothly in the cluster, and each company in the chain receives 
just what it needs from the preceding company in the chain to 
produce its desired output.  Designate this steady state condition 
with the superscript 0.  Then: 
 
 mn-1 Q0(n-1)  =  mn Q0(n)   [3] 
 
In terms of the normalized inventories 

 
  Y0(n-1)  =  Y0(n)    [4] 
 
i.e. in the ideal steady state condition, all of the normalized 
inventories have the same value, which we can designate by Y0: 
 
 Y0(n) = Y0    [5] 
 
Now, suppose the normalized inventories do not satisfy the ideal 
condition of eq. [5], but differ from that condition by small 
quantities yn(t): 
 
 Y(n,t) = Y0 + y(n,t)    [6] 
 
Then each company will try to respond to this situation by 
changing its rate of production to return to a steady state 
condition. 
 
Note:  This does not preclude attaining a steady state at a higher 
level of production, since m1 could change to a larger value.  We 
shall postpone studying the transient phenomena associated with 
this change to future papers. 
 
How will the nth company respond?   
 
Suppose that the inventory of the (n-1)st company drops below 
the desired Y0 value.  Then (with just-in-time cybernetic control 
operating), the nth company will not receive all it needs to 
achieve its desired production, and might have to decrease its rate 
of production.   The amount it must change its rate of production, 
however, depends on what its current normalized inventory is, as 
this determines how much it can buy from the (n-1)st company.  
If it is lower than the current normalized inventory of the (n-1)st 
company, it could actually increase its rate of production.  Thus, 
the rate at which it will change its rate of production depends on 
the difference between its own current inventory and the current 
inventory of the (n-1)st company.   
 
In the same manner, the rate of production of the nth company is 
affected by the current inventory of the (n+1)st company.  If the 
latter is very small, then it will not have enough capital to buy the 
output of the nth company, and the nth company will have to 
decrease its rate of production.  Again, however, the rate at which 
it changes its rate of production will have to depend on the 
difference between its own current inventory and that of the 
(n+1)st companies.  
 
To account for these two effects we write the approximate 
equation 
 
d2y(n,t)/dt2 =  (1/tn

2) [y(n-1,t) – y(n,t)] + (1/tn
2)[y(n+1, t) – y(n,t)]

   
      [7a] 
 
In this equation,  the LHS describes the rate at which the nth 
company is accelerating (or decelerating) its rate of production 
dy(n.t)/dt of inventory. 
 
The first term on the RHS describes the interaction of the nth 
company with the (n-1)st company and the second term on the 
RHS describes the interaction with the (n+1)st company.   
 



 
The (1/tn

2) factors account for the fact that any rate of change of 
production rate of the nth company must always be on the time 
scale of the company’s processing time tn. 
 
The linear dependences on the differences between the 
inventories of adjacent companies in the chain can be regarded as 
the first terms in a Taylor expansion of any more realistic 
production rate responses. 
 
Admittedly, eq. [7] is a somewhat crude approximation to the 
actual situation, but it will serve to demonstrate the desired 
propagation and resonance phenomena. 
 
The two y(n,t) terms on the RHS of eq. [7a] can be combined, 
giving 
 
d2y(n,t)/dt2 =  (1/tn

2) [y(n-1,t) – 2y(n,t) + y(n+1, t)] [7b] 
 
as the desired wave propagation equation. 
 
To be precise, there are two special cases to which eq. [7] does 
not apply: n=1 and n=N, since each of those companies have only 
1 adjacent company in the chain: 
 
We can use as the equation for n=1: 
 
 d2y(1,t)/dt2 =  (1/t1

2)[y(2, t) – y(1,t)]  [8] 
 
while for n = N, we can use 
  
 d2y(N,t)/dt2 =  (1/tN

2) [y(N-1,t) – y(N,t)]  [9] 
 
i.e. for each of the two companies at the end of the chain, the 
acceleration or deceleration of production rate is determined only 
by how the inventory of the nearest neighbor in the chain 
compares with its own inventory. 
 
In the next Section, we consider oscillatory and wave propagation 
solutions to these equations. 
 

4.  OSCILLATORY SOLUTIONS AND WAVES 
 
Assume a time dependence of the form 
 
 y(n,t) = y(n) exp(-iωt)   [8] 
 
Then eq. [7] becomes a second order difference equation in y(n).   
 
 y(n-1) – 2y(n) + y(n+1) +(ωtn)2 y(n) = 0  [9] 
 
Since the last term in this equation has a positive coefficient [i.e. 
since (ωtn)2 > 0], this equation describes solutions that are also 
oscillatory in n. 
 
By definition, the solutions of eq. [9] are the normal modes of the 
system. 
 
Special case of uniform processing times 
 
To get some feel for the type of  solutions that eq. [9] has, 
consider the case where all of the processing times in the 
companies in the chain are the same: 
 

 tn = T  n = 1,2,…,N  [10] 
 
This is certainly not an essential assumption and can easily be 
modified without changing the essential nature of the solution. 
 
Then eq. [9] simplifies to: 
 
 y(n-1) – 2y(n) + y(n+1) +(ωT)2 y(n) = 0  [11] 
 
Since this equation has constant coefficients – i.e. coefficients 
that are independent of n - we can in general write the solution as 
a Fourier series 
 
 y(n) = Σ y(p)exp[i2πpn/N]           [12] 
 
where the summation is over all integer p from -∞ to +∞. 
 
On substituting eq. [12] into eq. [11] and using the orthogonality 
properties of the exponentials, we find the necessary condition: 
 
 exp[-i2πp/N]  - 2 + exp[i2πp/N] +(ωT)2  = 0 [13]
  
 
Equation [13] is the dispersion relation for  a wave propagating 
along the chain.  
                   
This equation can be rewritten: 
 
 2[cos(2πp/N)-1] +(ωT)2 = 0   [14] 
 
or since 
 
 cos(2πp/N)-1 = - 2sin2(πp/N)   [15] 
 
eq. [14] can be rewritten 
 
 -4sin2(πp/N) + (ωT)2 = 0   [16] 
 
i.e. 
 
      ω = ± (2/T) sin(πp/N) where p is any integer [17] 
 
This dispersion relation gives the allowable oscillation 
frequencies for disturbances in the chain of N companies in the 
cluster.  
 
Comparison with dispersion relation for acoustic phonons in 
a solid 
 
It is interesting to compare the dispersion relation of eq. [17] with 
that for acoustic phonons in a monatomic lattice [3]     
 
 ω = ± 2(K/M)1/2 sin(ka/2)   [18] 
 
In eq. [18], K is the force constant between adjacent atoms, M is 
the mass of the atom, k is the wave number of an acoustic wave, 
and a is the dimension of the unit cell in the lattice. 
 
The phase velocity of the acoustic wave (which describes how 
the phase of a perfect wave moves through space) is 
 
 Vphase =  ω/k = 2(K/M)1/2 sin(ka/2)/k  [19a] 
 



 
and the group velocity of the acoustic wave (which describes how 
a localized disturbance moves) is 
 
 Vgroup = dω/dk = (Ka2 /M)1/2 cos(ka/2)  [19b] 
 
In the limit where ka<<1 – i.e. where the wavelength is long 
compared to the lattice spacing,  
 
 Vphase =  Vgroup => (Ka2 /M)1/2   [20] 
 
i.e. the two velocities become equal, and become independent of 
the wave number k. 
 
The physically significant wave numbers k are all less than 
 
 kmax  = ±π/a   [boundary of first Brillouin zone] [21] 
 
since larger k give redundant information due to the periodicity 
length a. 
 
Because of the similarity between the dispersion relations of eqs. 
[17] and [18], we can expect the same sort of behavior for waves 
in a cluster of companies.  This is discussed in the next Section. 
 
5. RESONANCES IN THE CLUSTER ASSOCIATED 

WITH PHASE AND GROUP VELOCITIES 
 
Management and government intervention in the cluster can be 
envisioned on several time scales.  In general, we can classify the 
intervention in terms of how the time scale tG of the intervention 
compares with the natural time scales (1/ω)  of the cluster.  Three 
cases are apparent: 
 
 Case 1.  Gradual background (infrastructure)  
              modification:  ωtG >>1 
 
 Case 2.  Resonant intervention   ωtG = O(1) 
 
 Case 3.  Noise   ωtG<<1 
 
In the first case, the intervention results in a slow change in the 
cluster’s parameters.  This case can be described by treating the 
equations adiabatically, using a multi-time scale formalism  that 
describes how a gradual change affects the much faster natural 
changes in the cluster [4].   
 
In the third case, the intervention can average out over the 
cluster’s natural time scale.  However, the presence of the rapidly 
changing interventions can result in a thermal-like effect on the 
cluster’s behavior.  This can cause an increased spread in the 
likely performance of the sector.  The details of the effect can be 
treated via a Fokker-Planck equation [5].   
 
Both the first and third cases will be treated in subsequent papers. 
 
Our focus here is on Case 2, the resonant intervention case.  We 
shall postpone a detailed treatment of this case, also, since it 
involves developing a Liouville-type equation for an appropriate 
distribution function for the cluster and using this distribution 
function to examine the phenomenon of Landau damping and 
amplification [6].  The latter involves disturbances that travel at 
the same velocities as the natural wave propagation velocities of 

the system.  This allows a continual resonant interaction that does 
not suffer phase cancellation. 
 
Here we restrict our attention to simply identifying what the 
natural velocities in the system are. 
 
In the acoustic case, the phase and group velocities have 
dimensions of 
 
 [V] = [distance/time]   [22] 
 
In the case of a large number N of companies in the cluster, the 
phase and group velocities simply measure how fast disturbances 
move from one company to the next in the supplier chain.  Thus, 
the phase and group velocities for the N-company cluster simply 
have the dimensions of 
 
 [V} = [1/time]    [23] 
 
Accordingly, the velocities here are essentially the inverse of the 
time that it takes for a disturbance to move from a company to an 
adjacent company. 
 
By comparison with the acoustic case, the phase velocity is 
 
 Vphase = ω/(2πp/N)    [24] 
 
since the unit cell dimension here is simply ∆n = 1. 
 
The phase velocity describes how fast any particular phase of a 
sine (or cosine)wave moves from one company to an adjacent 
company.  
 
The definition of the group velocity is 
 
 Vgroup = dω/ d(2πp/N)   [25] 
 
The group velocity describes how fast any localized disturbance 
[which is made up of a superposition of a number of sine (and 
cosine) waves] moves from one company to an adjacent 
company. 
 
From eq. [17], we see that 
 
 Vphase = ω/(2πp/N) =  ± (N/πT) sin(πp/N)/p [26] 
 
whereas 
 
 Vgroup = dω/d(2πp/N)= ± (1/T) cos(πp/N) [27] 
 
When 
 
 πp/N <<1     [28] 
 
both velocities reduce to  
 
 Vphase = Vgroup => ± (1/T)   [29] 
 
This is quite reasonable, since the processing time in each step ∆n 
= 1 is tn = T. 
 
The maximum  value of p that is nonredundant is  
 



 
 pmax = N/2    [30] 
 
[by analogy to eq. [20] that defines the boundary of the first 
Brillouin zone for acoustic phonons]. 
 
When 
 
 p => pmax     [31] 
 
then 
 
 Vphase = ω/(2πp/N) =  ± (N/πT) / {N/2} = 2/[πT] [32] 
 
 Vgroup => 0    [33] 
 
Thus, over the whole range of p,  the magnitude of the phase 
velocity is of O(1/T), but as p gets large the magnitude of the 
group velocity drops from O(1/T) to 0. 
 
The significance of these findings for resonant interactions can be 
summarized in three statements: 
 
(1)  Resonance effects can occur for interventions that start at the 
top of the supply chain and move down the supply chain as well 
as for those that start at the bottom of the supply chain and move 
upwards. 
 
(2)  Resonant interactions with the phase of a propagating wave 
will always occur with a phase velocity of O(1/T) 
 
(3)  Resonant interactions with a local disturbance must have 
velocities that are adjusted to the dominant wave number of the 
local disturbance.  For very localized disturbances, the velocity 
will be very small, whereas for mildly localized disturbances, the 
velocity will be of O(1/T). 
 
 
6. SUMMARY AND DISCUSSION 
 
Principal results 
 
In this paper, we have considered resonance phenomena in a 
cluster of a large number N of companies. 
 
Equations have been derived for the inventories in a simple 
model in which the nth company in the supply chain interacts 
only with the (n-1)st and (n+1)st  companies. The equations were 
found to simplify when a normalized inventory Y(n,t) was 
introduced [eq.(3)] in terms of the actual inventory Q(n,t).  In 
particular, the steady state Y(n) is the same for all companies in 
the chain.  
 
A second order differential equation in time has been developed 
for the rate at which Company n accelerates or decelerates its rate 
of production in response to how its current inventory differs 
from that of its two nearest neighbors [eq. (7)].  A wave equation 
was shown to result when an oscillatory solution was assumed for 
the deviations y(n,t) of the normalized inventories from the 
steady state [eq. (9)].  The wave equation defines the normal 
modes of the system. 
 
A dispersion relation {eq. (17) was derived for the case where the 
processing times tn are independent of n: i.e. tn = T.  The 

dispersion relation f eq. (17) is quite similar to that for acoustic 
phonons in a monatomic lattice [eq. (18)], allowing an intuitive 
understanding of the resulting resonance phenomena. 
 
Management or government interventions were divided into three 
classes, depending on whether their time scales were longer than 
[Case 1], comparable to {Case 2}, or shorter than {Case 3}, the 
naturally occurring oscillation frequencies given by the 
dispersion relation of eq. (17).  Case 1 can be treated by adiabatic  
multi-time scale formalism.  Case 2 can be described by a 
Liouville equation/Landau resonance formalism.  Case 3 can be 
addressed by a Fokker-Planck operator.  All three treatments will 
be examined in more detail in future papers. 
 
The phase velocity [eq. (26)] and group velocity [eq. (27)] 
corresponding to the dispersion relation of eq. (17) were 
obtained.  The former describes how fast the phase of a 
disturbance moves from one company to the next, while the latter 
describes how fast the peak of a localized disturbance moves 
from one company to the next.  It was shown that phase 
velocities are always of O(1/T) [eqs. (29) and (32)] while group 
velocities can vary from O(1/T) for mildly localized disturbances 
to O(0) for very localized disturbances [eqs. (29) and (33)]. 
 
Although not treated in detail here, it was pointed out that the 
largest intervention effects correspond to those that are applied to 
the cluster at the naturally occurring propagation velocities.  
Thus,   effective interventions can occur (1) in both top/down and 
bottom/up modes, (2) by resonating with phase propagation, and 
(3) by resonating with peak amplitude motion. 
 
Discussion 
 
The results obtained for this simple treatment of a cluster of N 
companies forming a linear supply chain appear to be quite 
promising.  They provide a good starting point for a quantitative 
analytical treatment of resonance phenomena in a cluster.  In 
particular,  the model provides a basis for analyzing the 
propagation of disturbances in the cluster, and for analyzing how 
management and government can most effectively interact with 
these naturally propagating disturbances. 
 
Future papers can extend the treatment in several ways: 
 
In a typical supply chain, it is probably not realistic to assume 
that each company in the chain requires the same processing time 
to add its value.  More realistic distributions of processing times 
should be considered, e.g., a chain where the processing times 
increase the higher up the chain a company is situated. 
 
When intervention time scales are long compared to the naturally 
occurring oscillation times of the cluster, Bogoluibov’s multi-
time scale formalism can be employed to describe adiabatic 
changes in the cluster behavior.  When intervention time scales 
are comparable to the naturally occurring oscillation times of the 
cluster, a Wigner distribution function can be introduced, and the 
effect of phase velocity resonance on the cluster’s Wigner 
distribution function can be obtained by a quasilinear treatment 
that has proven effective in plasma physics.  When intervention 
time scales are short compared to the naturally occurring 
oscillation times of the cluster, scattering phenomena occur.  This 
can be treated by introducing a Fokker-Planck operator.  The 
result should be an effective “temperature” for the cluster. 
 



 
The preceding considerations are fairly general and independent 
of the specific form of management and government intervention.  
Nevertheless, it will be of interest to consider different specific 
models of how government intervention affects the different 
parameters of the cluster model. 
 
We have not incorporated costs and pricing in this simple model.  
These additional elements will introduce the possibility of 
optimizing system profits.  Also, the manufacturing capabilities 
of each company have not been taken into account in the model.  
The effect of a weakest link needs to be investigated. 
 
We note that the considerations here are not limited to the 
manufacture of solid goods, but with some modification should 
be applicable to organizations that provide services as well.  In 

those situations, too, there may appear resonance phenomena that 
can be used to optimize the services provided by the entire 
service enterprise. 
 
In the model described here, the companies in the cluster are all 
arranged in a linear chain.  Gus Koehler’s cluster model is more 
general, allowing many companies in each layer of a supplier 
chain.  This generalization should be incorporated. 
 
It is hoped that the application of the normal mode technique of 
analysis to manufacturing supply chains can provide insight into 
the dynamics of the chains, and that this insight can indeed result 
in better cybernetic control of the supply chain processes.   
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